Milvus是开源的向量相似度搜索引擎,具有高度灵活、稳定可靠以及高速查询等特点。集成了 Faiss、NMSLIB、Annoy 等广泛应用的向量索引库,支持针对 TB 级向量的增删改操作和近实时查询。提供了一整套简单直观的 API,让你可以针对不同场景选择不同的索引类型。目前,Milvus 的服务器在单节点上运行。对于有更大数据规模或者高并发需求的用户,可以使用目前尚在开发阶段的集群分片中间件Mishards进行部署。
软件特色
全面的相似度指标
Milvus 支持各种常用的相似度计算指标,包括欧氏距离、内积、汉明距离和杰卡德距离等。您可以根据应用需求来选择最有效的向量相似度计算方式。
业界领先的性能
Milvus 基于高度优化的 Approximate Nearest Neighbor Search (ANNS) 索引库构建,包括 faiss、 annoy、和 hnswlib 等。您可以针对不同使用场景选择不同的索引类型。
动态数据管理
您可以随时对数据进行插入、删除、搜索、更新等操作而无需受到静态数据带来的困扰。
近实时搜索
在插入或更新数据之后,您可以几乎立刻对插入或更新过的数据进行搜索。Milvus 负责保证搜索结果的准确率和数据一致性。
高成本效益
Milvus 充分利用现代处理器的并行计算能力,可以在单台通用服务器上完成对十亿级数据的毫秒级搜索。
支持多种数据类型和高级搜索
Milvus 的数据记录中的字段支持多种数据类型。您还可以对一个或多个字段使用高级搜索,例如过滤、排序和聚合。
高扩展性和可靠性
您可以在分布式环境中部署 Milvus。如果要对集群扩容或者增加可靠性,您只需增加节点。
云原生
您可以轻松在公有云、私有云、或混合云上运行 Milvus。
简单易用
Milvus 提供了易用的 Python、Java、Go 和 C++ SDK,另外还提供了 RESTful API。
更新日志
新功能
#4564支持在get_entity_by_id()方法调用中指定分区。
#4806 支持在delete_entity_by_id()方法的调用中指定分区。
#4905 增加了release_collection()方法,从缓存中卸载一个特定的集合。
改进之处
#4756 提高了get_entity_by_id()方法调用的性能。
#4856 将hnswlib升级到v0.5.0。
#4958提高了IVF索引训练的性能。
修复的问题
#4778 在Mishards中访问向量索引失败。
#4797 合并具有不同topK参数的搜索请求后,系统返回错误结果。
#4838 服务器不会立即响应空集合上的索引构建请求。
#4858 对于支持GPU的Milvus,系统在有大topK(> 2048)的搜索请求时崩溃。
#4862 一个只读的节点在启动过程中会合并片段。
#4894 布隆过滤器的容量不等于它所属段的行数。
#4908 在放弃一个集合后,GPU缓存没有被清理。
#4933 系统需要很长时间才能为一个小段建立索引。
#4952 未能将时区设置为 "UTC + 5:30"。
#5008 在连续、并发的删除、插入和搜索操作中,系统随机崩溃。
#5010 对于支持GPU的Milvus,如果nbits≠8,在IVF_PQ上查询失败。
#5050 get_collection_stats()对仍在建立索引过程中的段返回错误的索引类型。
#5063 当一个空段被刷新时,系统会崩溃。
#5078 对于支持GPU的Milvus,在2048、4096或8192维度的向量上创建IVF索引时系统崩溃。
标签: 数据库工具
精品推荐
-
Qlik Sense
详情 -
Power BI Desktop
详情 -
MongoDB Compass软件
详情 -
Navicat Premium 15
详情 -
微软Access2019免产品密钥激活破解版
详情 -
Power Designer
详情 -
mysql数据库批量实体CS类导出工具
详情 -
Navicat全系列注册码生成器
详情 -
Access数据库引擎
详情 -
SQL2005开发版
详情 -
FileMaker Pro Advanced
详情 -
Navicat Premium 16永久激活版
详情 -
Stellar Repair for SQLite(SQLite数据库恢复)破解版
详情 -
Microsoft Office Access database Engine免安装版
详情 -
IBM SPSS Statistics22
详情 -
ApexSQL Log
详情
-
1 DBC2000
装机必备软件
网友评论